PC 計測 Python モジュール

LabdaqPyModule マニュアル

1、概略

本 PC 計測 Python モジュールは、タートル工業社の以下ADユニットに対応しており、 PCに接続された、これらADユニットの計測実行、取り込み等機能を提供するモジュ ールです。

TUSB-1612ADSM-S2Z	12bit 16ch	$0.1 V \sim \pm 10 V$	max100Ks/秒
TUSB-0412ADSM-S2Z	12bit 4ch	$0.1 \mathrm{V} \sim \pm 10 \mathrm{V}$	max100Ks/秒
TUSB-0212ADM2Z	12bit 2ch	0-2V, $\pm 1V$	max50Ms/秒
TUSB-0216ADMZ	16bit 2ch	$\pm 1.25 V \sim 10 V$	max 100Ks/秒
TUSB-0216ADMH	16bit 2ch	$0\text{-}2V$, $\pm 1V$	max 25Ms/秒
TUSB-K02ADVZ	12bit 2ch	$\pm 2.5 V$	max20Ks/秒

モジュールはモジュール初期化、デバイスセレクト、オープン、計測条件設定、 計測開始、ステイタス読み込み等、計測に必要な機能を提供しています。

計測は、モジュール内の別スレッドで高速に実行されます、Python 側はステイタスを 監視しながら、計測終了を待ち、完了後データを受け取ります。また計測中であっても、 取得データを受け取ることができます。

動作環境は

Windows7,8,10 32/64bit .Net FrameWork 4.5

2、インストール、および環境設定

Windows P C への Python インストール 以下のサイトからダウンロード インストールができます。 https://www.python.org/downloads/windows/

32bit、また 64bit、インストール対象 PC の OS にあわせてダウンロード、 インストール実行します。

完了後、コマンドプロンプトで、インストール、およびバージョンを確認します。

Windows P C へ Python ドットネットのインストール 本モジュールは C#で開発されており、これを Python から呼び出し可能とするため、 Pythonnet(Python for .net - GitHub)のインストールが必要です。

コマンドプロンプトから pip コマンドでインストールします。

3、PyModule 関数の呼び出し

以下のように clr をインポートして、呼び出します

import clr

clr.AddReference('LaBDAQPyModule') from LaBDAQPyModule import LabdaqTl

PyModule の呼び出し手順は

インスタンスの作成 labTL = LabdaqTl()

モジュールの初期化 s = labTL.InitialLabdaqTl()

デバイスの選択 Id = 0 deviceType = BT_1612ADSM s = labTL.SelectDevice(deviceType, Id)

デバイスのオープン bret = labTL.OpenDevice()

計測条件の設定 channelNum = input('Enter sampling channel number >') sampleNum = input('Enter sampling data number >') bret = labTL.SetSamplingChannelDataNum(channelNum, sampleNum)

サンプリング条件のセットアップ bret = labTL.SetupSampling()

サンプリング開始 bret = labTL.StartSampling()

```
サンプリング終了待ち
while True:
    ステイタスの取得
    status = labTL.GetSamplingStatus()
    現在までのデータ数の取得
    count = labTL.GetSamplingDataCount()
    if status == STS_SAMPEND:
        s = '計測、正常終了'
        print(s)
        count = labTL.GetSamplingDataCount()
        print('sampling data count = ', count)
        break
```

```
終了後、全計測データの取得
samplingDataBuff = []
samplingDataBuff = labTL.GetSamplingData(samplingDataBuff)
```

デバイスのクローズ labTL.CloseDevice()

モジュールの開放 labTL.TerminateLabdaqTl()

上記が基本の手順です、特に、デバイスのクローズ、モジュールの開放の終了処理 をしないで、プログラムを終了すると次回、起動しない場合があります。

この場合、一度、ADユニットをPCから切り離してください。

終了処理は必須です。

```
4、PyModule 関数一覧
```

定義定数

```
#const define
AD ユニット品番
BT_1612ADSM = 0
BT_0412ADSM = 1
BT_0212ADM2 = 2
BT_0216ADMZ = 3
BT_0216ADMH = 4
BT_02ADZ = 5
```

計測モード BSMODE_NORMAL = 0 BSMODE_TRIG_REPEAT = 1

計測開始モード STMODE_IMMEDIATE = 0 STMODE_HDTRIG = 1

サンプリングクロックタイプ CLOCKMODE_INTERNAL = 0 CLOCKMODE_EXTERNAL = 1

CH2 クロックフェイズ CLOCKPH_NORMAL = 0 CLOCKPH_REVERSE = 1

```
デバイスステイタス
STS_IDLE = 0
STS_TRGWAIT = 1
STS_TRGON = 2
STS_SAMPEND = 3
STS_SAMPSTOP = 4
STS_SAMPERROR = 5
```

モジュールの初期化 s = labTL.InitialLabdaqTl()

```
AD ユニットの選択
deviceType:
BT_1612ADSM = 0
BT_0412ADSM = 1
BT_0212ADM2 = 2
BT_0216ADMZ = 3
BT_0216ADMH = 4
BT_02ADZ = 5
Id:
s = labTL.SelectDevice(deviceType, Id)
```

```
現在選択の AD ユニットオープン
```

```
bret = labTL.OpenDevice()
```

現在の設定計測条件の取得

設定計測項目は LaBDAQ5-TL の画面に準拠しています。以下 LaBDAQ5-TL の 設定画面を参考にして下さい。

▲ 計測実行条件設定		and interest of		-		
現在のデバイス型番	TUSB-1612ADSM-SZ	×				
開始モード	即計測	•				
計測チャンネル数	16	使用/空きメモリ容量	128,000	/1,318,367,232	(使用率: 0.010%	0
サンプリング点数	1000	計測時間	サンプリン	/グ点数 × サンプリン	/グ周期 = 1.000	IS
プリトリガノポストトリガ点数	0 😫 /	1000 🚽	リトリガ点数	+ポストトリガ点数=	サンプリング点数	
		(ハードウエア:	プリトリガ時、最大10	000000)	
データバッファ点数	1000 🚔 <=	サンプリング点数 または	10,000,000			
データ取込み点数	10 🚔 <=	データバッファ点数				_
ロストエラー発生時は、デー	メバッファ点数をサンプリング	点数近くまで大きくします	、それでも発	生する場合はデータ	取込み点数を大	きくします。
<u>入力電圧レンジ</u> 土1	<u>ov</u>	サンプリングクロック サンプリングクロック値 サンプリング周 サンプリング周	·選択 (分周比) 明 数	● 内部クロック (1000) 1000.0000000 1.0000000) 外部クロック x 1000nsec(10 usec ・ kHz ・)-16777215)
ハードウェアトリガ条件						
トリガタイプ	外部デジタル入力立ち	5上り 👻	開始モード	がハードウエアプリト	リガ時のみ有効	
トリガチャンネル	チャンネル01	-				
トリガレベル	1	-9.9951	Volt	(1-4095)		
					ок	キャンセル

₩ 計測実行条件設定 					
現在のデバイス型番	TUSB-0216ADMH -				
計測形式	通常計測 ▼ トリガ繰り返し計測データ点数 1000 🔤				
	(1-1048576)、かつサンプリング点数以下				
開始モード	即計測 🗸 使用/空きメモリ容量 16,000/1,274,392,576 (使用率: 0.001%)				
計測チャンネル数	2 🗇 計測時間 サンプリング点数 x サンプリング周期 = 0.000040s				
サンプリング点数	1000				
プリトリガノポストトリガ点数	0 🝦 / 1000 プリトリガ+ポストトリガ=サンプリング点数 (ハードウエアプリトリガ時、最大1048576)				
データ取込み点数	10 〜 <= サンプリング点数(計測でデータロストエラー発生する場合、大きくします)				
ハードウエアトリガ条件					
トリガ発生源 外部トリガ入力(TTLレベル) ▼ 開始モードがハードウエアプリトリガ時のみ有効 CH1トリガレベル 1 テ -1.0000 Volt (1-65534) ノイズ除去レベル 0 テ (0-3277)					
	ОК ++>>セル				

計測チャンネル数、計測データ数の取得

channelNum = 0 sampleNum = 0 ret, channelNum, sampleNum = labTL.GetSamplingChannelDataNum(channelNum,

sampleNum)

基本サンプリング条件の取得 baseMode = 0 baseModeTrigDataNum = 0 startMode = 0 dataBufferSize = 0 dataReadSize = 0 inputRange = 0 ret, baseMode, baseModeTrigDataNum, startMode, dataBufferSize, dataReadSize, inputRange = labTL.GetSamplingMode(baseMode,

> baseModeTrigDataNum, startMode, dataBufferSize, dataReadSize, inputRange)

サンプリングクロック条件の取得 samplingClockMode = 0 samplingClockSource = 0 samplingClockDivider = 0 ch2ClockPhase = 0 averageNum = 0 samplingRate, samplingClockMode, samplingClockSource, samplingClockDivider, ch2ClockPhase, averageNum = labTL.GetSamplingClock(samplingClockMode,

> samplingClockSource, samplingClockDivider, ch2ClockPhase, averageNum)

トリガ条件の取得 triggerSource = 0 triggerChannel = 0 triggerHyLevel = 0 preTriggerNum = 0 ret,triggerSource,triggerChannel,triggerLevel,triggerHyLevel, preTriggerNum = labTL.GetSamplingTrigger(triggerSource, triggerChannel, triggerLevel, triggerHyLevel, preTriggerNum) 現在選択 AD ユニットの入力レンジ、クロックソース、トリガソースの一覧 の取得 list = []

list = labTL.GetInputRangeList(list)

list = []

list = labTL.GetClockSourceList(list)

list = []

list = labTL.GetTrigSourceList(list)

計測条件の設定

計測チャンネル数、計測データ数の設定 channelNum = input('Enter sampling channel number >') sampleNum = input('Enter sampling data number >') ret = labTL.SetSamplingChannelDataNum(channelNum, sampleNum)

```
基本サンプリング条件の設定
```

baseMode = input('Enter base mode(0:normal 1:trigger repeat) >')

startMode = input('Enter start mode(0:immediate 1:hardware trigger) >')

dataBufferSize = input('Enter data buffer size >')

dataReadSize = input('Enter data read size >')

inputRange = input('Enter input range >')

ret = labTL.SetSamplingMode(baseMode,

baseModeTrigDataNum, startMode, dataBufferSize, dataReadSize, inputRange)

サンプリングクロック条件の設定

> ch2ClockPhase, averageNum

```
トリガ条件の取得

triggerSource = input('Enter trigger source >')

triggerChannel = input('Enter trigger channel >')

triggerLevel = input('Enter trigger level >')

triggerHyLevel = input('Enter trigger hysteresis level>')

preTriggerNum = input('Enter pretrigger number >')

bret = labTL.SetSamplingTrigger(triggerSource,

triggerChannel,

triggerLevel,triggerHyLevel,

preTriggerNum)
```

サンプリング条件のセットアップ bret = labTL.SetupSampling()

サンプリング開始

bret = labTL.StartSampling()

サンプリングのステイタス取得

status = labTL.GetSamplingStatus()				
	status == STS_IDLE	'待機中'		
	status == STS_TRGWAIT	'トリガ待ち'		
	status == STS_TRGON	'計測中'		
	<pre>status == STS_SAMPEND</pre>	'計測、正常終了'		
	status == STS_SAMPSTOP	'計測が中断されました'		
s	tatus == STS SAMPERROR	'計測エラーで中断'		

現在までのサンプリング点数の取得

count = labTL.GetSamplingDataCount()

サンプリングエラーコードの取得 ret = labTL.GetSamplingErrorCode()

サンプリングエラーメッセージの取得 ret = labTL.GetSamplingErrorMessage() 現在までのサンプリングデータ取得

samplingDataBuff = []
samplingDataBuff = labTL.GetSamplingData(samplingDataBuff)

データチャンネル毎に計測データ点数分保存されている配列です
 配列 0 ch0 データ(1回目)
 配列 N-1 chN-1 データ(1回目)
 配列 N ch0 データ(2回目)
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I

現在のデバイスのクローズ labTL.CloseDevice()

モジュールの開放終了処理 labTL.TerminateLabdaqTl() 5、サンプルプログラム

pySample フォルダに本 PC 計測モジュールをすべて使用したサンプルが含まれています。

ファイル名は、sampleLabdaqPy.py で、そのままで実行できます。あとモジュール Dll は 32bitOS,64bitOS で異なりますが、パイソンサンプルは同じです。

計測テスト、グラフチャートソフトウエア開発

株式会社 松山アドバンス 愛媛県松山市古川西2丁目11-24 TEL 089-957-2243 FAX 089-958-2143

www.elabnet.jp

eLaBNET

お問い合わせは089-957-2243

info@labnet.co.jp

16